首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3379篇
  免费   635篇
  国内免费   406篇
化学   2572篇
晶体学   37篇
力学   395篇
综合类   40篇
数学   475篇
物理学   901篇
  2024年   3篇
  2023年   56篇
  2022年   108篇
  2021年   143篇
  2020年   193篇
  2019年   172篇
  2018年   137篇
  2017年   159篇
  2016年   207篇
  2015年   162篇
  2014年   210篇
  2013年   302篇
  2012年   251篇
  2011年   255篇
  2010年   211篇
  2009年   206篇
  2008年   196篇
  2007年   198篇
  2006年   179篇
  2005年   165篇
  2004年   155篇
  2003年   177篇
  2002年   115篇
  2001年   77篇
  2000年   54篇
  1999年   46篇
  1998年   40篇
  1997年   40篇
  1996年   23篇
  1995年   37篇
  1994年   29篇
  1993年   14篇
  1992年   13篇
  1991年   16篇
  1990年   14篇
  1989年   9篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有4420条查询结果,搜索用时 31 毫秒
41.
A novel approach is presented for the encapsulation of organic functional molecules between two sheets of 1 nm thin silicate layers, which like glass are transparent and chemically stable. An ordered heterostructure with organic interlayers strictly alternating with osmotically swelling sodium interlayers can be spontaneously delaminated into double stacks with the organic interlayers sandwiched between two silicate layers. The double stacks show high aspect ratios of >1000 (typical lateral extension 5000 nm, thickness 4.5 nm). This newly developed technique can be used to mask hydrophobic functional molecules and render them completely dispersible in water. The combination of the structural anisotropy of the silicate layers and a preferred orientation of molecules confined in the interlayer space allows polymer nanocomposite films to be cast with a well‐defined orientation of the encapsulated molecules, thus rendering the optical properties of the nanocoatings anisotropic.  相似文献   
42.
Hybrid materials integrated with a variety of physical properties, such as spin crossover (SCO) and fluorescence, may show synergetic effects that find applications in many fields. Herein we demonstrate a promising post‐synthetic approach to achieve such materials by grafting fluorophores (1‐pyrenecarboxaldehyde and Rhodamine B) on one‐dimensional SCO FeII structures. The resulting hybrid materials display expected one‐step SCO behavior and fluorescent properties, in particular showing a coupling between the transition temperature of SCO and the temperature where the fluorescent intensity reverses. Consequently, synergetic effect between SCO and fluorescence is incorporated into materials despite different fluorophores. This study provides an effective strategy for the design and development of novel magnetic and optical materials.  相似文献   
43.
新能源战略体系的建设和电子技术的飞速发展对储能器件的性能提出了更高的要求,锂离子电容器是将锂离子电池和双电层电容器“内部交叉”的新型混合储能器件,兼具高能量密度和高功率密度,近年来引起了国内外的广泛关注.本文阐述了锂离子电容器的工作原理和国内外产业发展现状,总结了碳负极的预赋锂技术、电极材料与体系匹配性研究等关键技术前沿的研究成果,并提出了后续产业化研究中所需要解决的实际问题.  相似文献   
44.
A platform technology for the creation of spatially resolved surfaces encoded with a monolayer consisting of different metal complexes was developed. The concept entails the light‐triggered activation of a self‐ assembled monolayer (SAM) of UV‐labile anchors, that is, phenacylsulfides, and the subsequent cycloaddition of selected diene‐functionalized metal complexes at defined areas on the surface. The synthesis and characterization of the metal complexes for the UV‐light assisted anchoring on the surface and a detailed study of a short‐chain oligomer model system in solution confirm the high efficiency of the photoreaction. The hybrid materials obtained by this concept can potentially be utilized for the design of highly valuable catalytic or (opto‐)electronic devices.  相似文献   
45.
New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p‐divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid‐state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl‐fluoro‐phenylene rotors, affecting their motion and the dielectric properties.  相似文献   
46.
Organic structure‐directing agents (OSDAs), such as quaternary ammonium cations and amines, used in the synthesis of zeolites and related crystalline microporous oxides usually end up entrapped inside the void spaces of the crystallized inorganic host lattice. But none of them is known to form direct chemical bonds to the framework of these industrially important catalysts and adsorbents. We demonstrate that ECR‐40, currently regarded as a typical silicoaluminophosphate molecular sieve, constitutes instead a new family of inorganic‐organic hybrid networks in which the OSDAs are covalently bonded to the inorganic framework. ECR‐40 crystallization begins with the formation of an Al–OSDA complex in the liquid phase in which the Al is octahedrally coordinated. This unit is incorporated in the crystallizing ECR‐40. Subsequent removal of framework‐bound OSDAs generates Al‐O‐Al linkages in a fully tetrahedrally coordinated framework.  相似文献   
47.
Simultaneous manipulation of both spin and charge is a crucial issue in magnetic conductors. We report on a strong correlation between magnetism and conductivity in the iodine‐bonded molecular conductor (DIETSe)2FeBr2Cl2 [DIETSe=diiodo(ethylenedithio)tetraselenafulvalene], which is the first molecular conductor showing a large hysteresis in both magnetic moment and magnetoresistance associated with a spin‐flop transition. Utilizing a mixed‐anion approach and iodine bonding interactions, we tailored a molecular conductor with random exchange interactions exhibiting unforeseen physical properties.  相似文献   
48.
Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica–biopolymer hybrids are a promising alternative. A one‐pot process to monolithic, superinsulating pectin–silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed “neck‐free” nanoscale network structure with thicker struts. Such a design is superior to “neck‐limited”, classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica–biopolymer nanocomposite aerogels.  相似文献   
49.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   
50.
We present a systematic density functional theory (DFT) study of the structure and catalytic activity of group 10 (Ni, Pd, Pt) and group 11 (Cu, Ag, Au) coinage metal nanoribbons. These infinite, periodic, quasi‐one‐dimensional structures are conceptually important as intermediates between small metal clusters and close‐packed metal surfaces, and have been shown experimentally to be practical catalysts. We find that nanoribbons have significantly higher predicted H2 dissociation activity than close‐packed metal surfaces consistent with their lower coordination numbers. Computed periodic trends are reasonable, with late transition states and low barriers for H2 dissociation over late group 10 nanoribbons, suggesting their promise as practical catalysts. These trends are consistent with the isolated nanoribbons' computed molecular electrostatic potentials. Calculations also predict nearly linear Brønsted–Evans–Polanyi relationships between the nanoribbons' H2 dissociation energies and dissociation barriers. We also test new meta‐generalized gradient approximation (GGA) and hybrid DFT approximations for H2 dissociation over these nanoribbons. These new functionals increase the (generally underestimated) dissociation barriers predicted by standard GGAs, motivating their continued application in surface chemistry. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号